

Public Meeting

Results of the Rivanna River Total Maximum Daily Load Study

February 11, 2008

Benthic Impairment

What does it mean?

• Stream does not support a healthy and diverse aquatic life

What is the standard?

 State waters shall be free from pollutants which are harmful to aquatic life

How is it assessed?

- Biologist collects and identifies benthic macroinvertebrates
- The numbers and kinds of benthic macroinvertebrates collected are compared to a healthy reference condition
- The stream is given a Stream Condition Index (SCI) score based on this comparison (<60 = impaired)

Bacterial Impairment

What does it mean?

• Bacteria from human and/or animal waste exceeds the state's standard for safe swimming

What is the standard?

• No more than 235 E. coli/100ml water

How is it assessed?

 Stream is listed as impaired if more than 10% of samples collected exceed the standard

Rivanna TMDL Studies

Aquatic Life Study

- Addressed aquatic life impairments in:
 - Rivanna River mainstem

DEQ has contracted with:

THE Louis Berger Group, INC.

to conduct the studies

Bacteria Study

- Addressed bacteria impairments in:
 - Rivanna River mainstem
 - North Fork Rivanna
 - Preddy Creek
 - Meadow Creek
 - Mechums River
 - Beaver Creek

What is the Status of the Studies?

- Studies have been ongoing since March 07
- We have had the help of a number of local stakeholders that have served on a local steering committee
- Draft study reports are available for public review and comment from now until March 12, 2008

https://www.deq.virginia.gov/TMDLDataSearch/DraftReports.jspx

Send comments to:

Robert N. Brent
Regional TMDL Coordinator
4411 Early Road
P.O. Box 3000
Harrisonburg, VA 22801
(540) 574-7848

rnbrent@deq.virginia.gov

What Were the Goals of the Study?

- Identify Pollutants
- Identify Sources
- Calculate Loads
- Model Water Quality
- Estimate Reductions

Bacteria Study Results: What reductions are needed to fix the problem? • The report answers this question in two ways: • What would it take to never exceed the bacteria standard? • What would it take to remove the impairment (exceed the standard no more than 10% of the time)? Current Bacteria Load 6.14 x 10¹⁴ E.coli/yr Reduction

Load That Meets Standards

Necessary Reductions: to Never **Exceed Bacteria Standard** % Reduction in Bacteria Needed Straight Livestock Wildlife Agricultural Urban Pipes/Failing Direct Direct Runoff Runoff Septics Deposit Deposit Rivanna River 95% 95% North Fork 95% Rivanna Preddy Creek Meadow Creek 95% Mechums River 95% 95% Beaver Creek 95% 95%

Necessary Reductions: <u>to Remove</u> <u>Bacteria Impairment</u>

	% Reduction in Bacteria Needed				
	Straight Pipes/Failing Septics	Livestock Direct Deposit	Agricultural Runoff	Urban Runoff	Wildlife Direct Deposit
Rivanna River	100%	92%	0%	0%	0%
North Fork Rivanna	100%	100%	50%	58%	0%
Preddy Creek	100%	100%	50%	48%	0%
Meadow Creek	100%	100%	0%	23%	0%
Mechums River	100%	100%	55%	0%	0%
Beaver Creek	100%	95%	0%	0%	0%

Benthic Study Results: What Is Affecting the Bugs?

- Conducted a Stressor Identification Analysis
 - List all potential causes
 - Analyze the evidence for and against each
 - · Historical and newly collected data
 - Bug community, habitat, water quality, sediment quality, etc.
 - Separate potential causes into the following bins

Most Probable Stressors (most likely causes)

- <u>Sediment</u> physical stress caused by too much sediment smothering available habitat
 - Evidences: Relative Bed Stability Analysis, habitat assessment, macroinvertebrate data, visual assessment, sediment rating curves
- <u>Urban Runoff</u> included because the largest source of sediment is from bank erosion due to increased flows; also urban runoff can carry toxics

Sediment

• A healthy "bug" community requires a clean stream bottom with lots of space between rocks and gravels

Relationship Between Impervious Area and Instream Erosion

- Impervious areas increase surface runoff
 - In Rivanna, urbanized area accounts for only 8% of land area, but 23% of runoff (~3x)
- Increased runoff increases magnitude and frequency of high stream flows
- Increased flow causes channel to adapt by widening and deepening

	ry Sedimen		0010115	
Source	Land Use	Existing Load (lbs/d)	Allocated Load (lbs/d)	% Reduction
	Forest	164	164	-
	Cropland	14,654	5,958	59.3%
Non-Point Source	Pasture/hay	15,829	6,435	59.3%
	Residential	2,517	1,023	59.3%
	Instream Erosion	20,900	8,497	59.3%
MS4	Land-based	2,223	904	59.3%
MS4	Instream Erosion	6,545	2,661	59.3%
Permitted Non-Point	Land-based	1,146	1,146	-
Sources	Instream Erosion	882	882	-
Permitted Point Sources	VPDES Permits	524	4,636	-
Margin of		3,590		
Tota	1	65,384	35,896	45.1%

